Al WFERISo

Aalto University

Real-time Adversarial Perturbations against Deep
Reinforcement Learning Policies:
Attacks and Defenses

Buse G. A. Tekgul, Shelly Wang, Samuel Marchal, N. Asokan

batlitekgul@acm.org
buse.atli_tekgul@nokia-bell-labs.com

Background
DNN Classifiers vs. DRL Agents

Reinforcement Learning

In RL, an agent interacts with an environment to optimize its policy
* Policy: Decision making strategy, m(a¢|s¢) : S — A

« State-action value function: Helps optimizing the policy in discrete tasks, Qfs,a/

“ﬁ Agent

v v
=l
33

State Reward Action

S(t41) €S T(t+1) arc A

Environment

Deep Reinforcement Learning (DRL)

DRL learns successful policies directly from high-dimensional inputs
* Reinforcement Learning (RL) defines the objective: maximize future reward
« Deep Neural Networks (DNN) provides the mechanism: approximate the policy

®

—C
2.6

:

P(e+1) |
: 0 0O |

DNN (policy,
Q function)

0.15

0.65

0.20 a€A

S(t—l—l) €S

Adversarial Examples in DNN Classifiers

Adversary compromises model integrity: Cause wrong predictions via adversarial examples!!
« Confidence reduction

« Targeted misclassification

« Untargeted misclassification

APl granularity: From top label to full results

Model knowledge: Prediction
- 779 -— Service
« Black-box (query-based methods, transferability) {g' > | Provider
» White-box .\) AP
Victim
Model (Image ,
Classifier) BRIk Y%

Shephard, 99%

[1] Szegedy, et al. “Intriguing properties of neural networks"https://arxiv.org/abs/1312.6199

Adversarial Examples in DNN vs. DRL

RL has peculiarities (e.g., task complexity, stochasticity, limited observable information) that make the
application of attacks against DNN classifiers challenging.

Adversarial perturbations are added into

« DNNs!M: .. into clean image « DRLs! : ... into directly environment, or

« - (Classifieris victim, wrong label states, sensors, actuators etc.
« — Policy/Perception component/Control

component is victim, sub-optimal action

[2]

SChOOI bus OStriCh :-,-lgn(v,.](ﬂ,r.y))
action taken: down)

original input
1. Szegedy et al., “Intriguing Properties of Neural Networks”arXiv, 2013. https://arxiv.org/abs/1312.6199v4 6
2. Huang et al. “Adversarial Attacks on Neural Network Policies”, arXiv 2017. https://arxiv.org/pdf/1702.02284.pdf

action taken: noop
adversarial input

https://arxiv.org/abs/1312.6199v4
https://arxiv.org/pdf/1702.02284.pdf

Adversarial Examples in DNN vs. DRL

In DRL,

« No 1-1 mapping between states and actions (no pre-defined labels)
* One successful adversarial example might not affect the task

Adversarial goals in DRL:

« Reward minimization: Reduction in the return, i.e., total rewards (targeted or untargeted)
« Policy-luring: Force agent to reach a desired state, or follow a desired policy, path etc. (targeted)

[2]

School bus Ostrich

sign(V,J(0,x,y))
action taken: down action taken: noop
original input adversarial input

1. Szegedy et al., “Intriguing Properties of Neural Networks”arXiv, 2013. https://arxiv.org/abs/1312.6199v4
2. Huang et al. “Adversarial Attacks on Neural Network Policies”, arXiv 2017. https://arxiv.org/pdf/1702.02284.pdf

https://arxiv.org/abs/1312.6199v4
https://arxiv.org/pdf/1702.02284.pdf

Realistic Adversaries in DRL

A realistic attack

« cannot change the inner workings of victim agent (e.g. short-term memory, received rewards)
« should compute + add the perturbation fast enough to be implemented in real time
* The online cost should be less than

Tinaz = 1/frame rate — agent response time

Prior attacks are not realistic, they : Bechiesmante time Ta;nasc
« are too slow to be mounted in real timel"2] tl - = “‘ >
« modify the short term memory of victim®! - |

[Observationt] | action | [Observationt+ 1}

Can we effectively fool DRL policies in real-time? >

1/frame rate

1. Lin, Yen-Chen, et al. “Tactics of adversarial attack on deep reinforcement learning agents.” |JCAI 2017. https://arxiv.org/abs/1703.06748
2. Pan, Xinlei, et al. "Characterizing Attacks on Deep Reinforcement Learning." AAMAS 2022. https://arxiv.org/abs/1907.09470
3. Huang et al. “ddversarial Attacks on Neural Network Policies”, arXiv 2017. https://arxiv.org/pdf/1702.02284

https://arxiv.org/abs/1703.06748
https://arxiv.org/abs/1907.09470
https://arxiv.org/pdf/1702.02284

State- and Observation-Agnostic Adversarial
Perturbations in DRL

Adversary Model

Adversary:

« wants a reinforcement learning agent to fail its task (reward minimization)
» uses state-action value function Q(s,a) to generate sub-optimal actions for discrete tasks

Adversarial capabilities:
* has the knowledge of

« RL algorithm and

o0 Agent

vy

Zle-

« DNN model used for victim’s policy

« cannot reset environment, replay earlier state, T
Adversary
th

F(t+1)
or induce a delay during the task

CLtE.A

~

N

&
<«

Environment

10

State- and Observation- Agnostic Perturbations

Universal Adversarial Perturbations (UAP)!" in DRL settings using
« Find a sufficiently small perturbation H’I“Hp = HSde(t) — Sth
that results in sub-optimal actions for every perturbed state Sadwv(t)

- State-agnostic (UAP-S): Perturbation is uniform across different states but is not uniform between the
observations within a state

« Observation-agnostic (UAP-0): Perturbation is uniform across all observations

State UAP-S

11
1. Moosavi-Dezfooli, Seyed-Mohsen, et al. “Universal adversarial perturbations.” CVPR 2017. https://arxiv.org/abs/1610.08401

https://arxiv.org/abs/1610.08401

State- and Observation- Agnostic Perturbations

Attack Design:

1.
2.

Collect training data by observing a full episode

Sanitize the training data by choosing only critical
states

Clone DNN (i.e., approximated state-action value
function) of victim agent to an adversary’s agent

Compute the perturbation using Algorithm 1 in an
offline manner

Add the perturbation to any other state in any other
episode during the task

Algorithm 1: Computation of UAP-S and UAP-O

input :sanitized Dy, qin, Q440 desired fooling rate d,,
max. number of iterations it,; 4., pert. constraint e
output:universal r
1 Initialize r « 0, it « 0:
while § < dpuxr and it < ity do
for s € Dirain do
if O(s+r) = O(s) then
\; Find the extra, minimal Ar:

e W ba

Ar « argmin, . ||Ar||, s.t. O(s+r+Ar) # QO(s);
r « sign(min(abs(r + Ar),€));

7 Calculate & with updated r on Dy, gin;
L it «— (it+1);

ce

12

State- and Observation- Agnostic Perturbations

Modification of obs-fgsm-wb (OSFW)["] to a completely universal version OSFW(U):

OSFW:

« calculates the perturbation by taking the average of the gradients of first kstates
« adds the perturbation to the remaining states

Effectiveness of OSFW depends on the first k state for each run
Generating the perturbation takes longer than the minimum online cost

1. Pan, Xinlei, et al. "Characterizing Attacks on Deep Reinforcement Learning." AAMAS 2022. https://arxiv.org/abs/1907.09470

13

https://arxiv.org/abs/1907.09470

Experimental Results: Performance Degradation

Random —e— FGSM =¥ OSFW -#- UAP-S -m- UAP-O —o- OSFW(U)

Pong,DQN Pong,PPO Pong,A2C
| \
20 A ‘
10 - T ‘
0 '._ ‘
5]
—10 ols
—20

A ——

0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010 0.000 0.002 0.004 0.006 0.008 0.010
€ € €

14

Experimental Results: Amount of Perturbation

UAP-S and UAP-O produce smaller perturbation compared to FGSM, OSFW and OSFW(U)

« Difference between objective functions

@ initial / source example
© minimum-distance block-box adversarial example
Clea n State Ly minimum-distance white-box adversarial example

@ maximum-confidence biock-box adwersarial example

A maximum-confidence white-box adversarial example

==__ __- surrogate classifier f{x) used to craft block-box adversarial examples

target dlassifier f{x) used to craft white-box adversarial examples

Demontis et al. USENIX19.

OSFW(U)

15
15

Experimental Results: Computational Cost

« FGSM has low online cost, but requires rewriting victim agent’s memory

« OSFW has high online cost, so it misses perturbing 102 states on average

« UAP-S, UAP-O have high offline cost, but it does not interfere with the task

« UAP-S, UAP-O and OSWF(U) low online cost, can be implemented in real-time

Attack Offline cost+ std Online cost + std

Experiment method (seconds) (seconds)
FGSM - 13x10°7+£10°°
Pong, DQN, OSFW - 5.3+ 0.1
Tinaz = 0.0163 £ 107° UAP-S 36.4+21.1 2.7 %x107% £ 107"
seconds UAP-O 138.3 + 25.1 2.7 % 107% £ 107"
OSFW(U) 5.3+0.1 2.7 % 107%(£107%)
FGSM - 2l x 10 T+ 10 °
Pong, PPO, OSFW - 7.02 4+ 0.6
Tonax = 0.0157 =107 UAP-S 41.9 + 16.7 27 %107 £ 107"
seconds UAP-O 138.3 £ 25.1 27x107% £ 107"
OSFW(U) 7.02 + 0.6 2.7 % 1075 £ 1078
FGSM - 21 = 10 T+ 10 °
Pong, A2C OSFW - 724 1.1
Tonax = 0.0157 =107 UAP-S 11.4+43 27 %107 £ 107"
seconds UAP-O 55.5 + 20.3 2.7 x 107+ 107"
OSFW(U) 7.2+1.1 2.7 % 1075 £ 1078

16

16

Experimental Results: Continuous Control

Challenge:
No discrete action space (lack of Q(s,a))

Solution:

* Exploit value function V(s) used in policy

« Modify Algorithm 1 using V(s)

* Goal: Decrease the evaluation of the state

UAP-S and UAP-O generalize to
continuous control

w— Random

- FGSM
Walker2d, PPO

~¥~ OSFW -®@-

UAP-S(0)

-& OSFW(U)
Humanoid., PPO

5000 6000 4 —
4000 5000
g S000 A 4000 4
5 \‘3000 .
~ 2000
ey 1
2000 =
1000 . >
A1000
&,*. R
0 -
T T T T 0 T T T T
0.00 004 0.08 0.12 0.16 020 0.00 0.04 0.08 0.12 016 0.20
€ €
Experiment Attack Offline cost+ std Online cost + std
P method (seconds) (seconds)
FGSM - N x1077+£107°
OSFW 0.02 4 0.001

Walker2d, PPO,

=

Trinar = 0.0070 4 1077 seconds

UAP-S (0)
OSFW(U)

B.7H 4+ 0.024
0.02 &4 0.001

20 % 1077 +107"
20 %107 £ 107"

Humanoid PPO,

Tinax = 0.0079 + 107" seconds

FGSM -
OSFW

UAP-S (O)
OSFW(U)

35.86 &4 0,466
0.02 &£ 0.001

35 x 107 +£107°
0.02 4= 0.001
24 % 107"+ 107"
24x 1077 +107"%

17

Detection and Mitigation of Adversarial Perturbations

Current defenses:
« Hard to apply adversarial example

Average return + std in the presence of adversarial perturbation attacks

detection techni ques epsilon Defense Noattack FGSM OSFW UAP-S UAP-O OSFW(U)

No defense 21.0+0.0 —21.0+£00 -200£30 -21.0%+00 -198+04 —21.0%0.0

° 1+1 1 1Nt VF [17] 21.0€00 21000 -19.7+05 0.7+ 1.7 04+27 =21.0%0.0
Tradltlonal adversarlal tralnlng |eads 0.01 SA-MDP [40] 2L0#0.0 21.0%0.0 21.0%00 21.0%00 2L0=0.0 2L.0=00
unstable training and performance No defense 21.0+0.0 -199+13 —21.0%0.0 -208+06 -200£00 —21.0+0.0

) 0.02 VEF [17] 21.0+£00 21+£00 -19.7+06 9.4+0.8 53+39 —205+05

degradat|on ‘ SA-MDP [40] 2100#00 -146+88 —205+05 -206+05 -206+05 —21.0%0.0

No defense 21.0+£0.0 -205+0.7 —-21.0%+0.0 -206+08 -20.0+00 —-21.0%0.0

0.05 VE [17] 21.0£00 21000 -200+00 7.6+47 —141+11 —21.0+0.0

SA-MDP [40] 21.0+£00 -21.0%£0.0 -21.0%0.0 -206+0.5 -206%+05 -21.0%0.0
(a) DON agent playing Pong

Visual Foresight! (VF): apply action-

Average return =+ std in the presence of adversarial perturbation attacks

141 _ _ 1 1 1 epsilon Defense No attack FGSM OSFW UAP-S UAP-O OSFW(U)
conditioned-frame predICtIOﬂ for detection & No defense 34.0+00 0.0+00 20+1.1 21+08 4.0+06 05+05
recovery - VEQ7) B20DS5 S26HWT 241+10 229:09 25811 209%12

SA-MDP [40] 30.0+£0.0 30.0+0.0 30000 300%00 B30:0%00 530:0%0:0

‘ . ‘ ‘ No defense 34.0+£00 0.0%00 10+00 01+03 0806 0.0£0.0

- Ineffective agalnst universal perturbatlons 0.02 VF [17] 3200%W5 B326%T7 11203 24020 25610 14+11
. . . : SA-MDP [40] 30.0+0.0 29.8+0.6 299%03 294%12 294%=12 3000£00

SA'MDP[Z]: find Optlmal pollcy under the worst No defense 34.0+£00 0.0+00 12+00 22+17 22+14 0.0+0.0

. VF [17] 32014 326+1.6 1.0+00 290+11 23.9+03 0.0£0.0
p055|b|e adversary using pO|ICy regU|ar|Zat|On 0-05 SA-MDP [40] 30.0+£0.0 211+13 2009%08 21.1+17 21.1+17 2NTELT

(b) DON agent playing Freeway

« Ineffective against bigger perturbations

1. Lin, Yen-Chen, et al. "Detecting adversarial attacks on neural network policies with visual foresight."arXiv 2017. https://arxiv.org/abs/1710.00814 18
2. Zhang, Huan, et al. "Robust deep reinforcement learning against adversarial perturbations on state observations.“NeurlPS2020 https://arxiv.org/abs/2003.08938

https://arxiv.org/abs/1710.00814
https://arxiv.org/abs/2003.08938

Detection and Mitigation of Adversarial Perturbations

In tasks that can end with clear negative results:
* Losing a game
« Ends episode with negative returns

The victim would be able to suspend/forfeit an episode if the adversary could be detected to prevent
the negative outcome

Can we develop an effective
detection mechanism that can

detect the presence of the 54+ €S |
adversary?

vy

Agent
o)
D

T(t+1) Adversary i cA

@ Environment

19

AD? - Action Distribution Divergence Detector

Threshold-based detection method
« Measures statistical distance between the conditional action probability distributions (CAPD)

Run k, episodes Run different k,
in a safe env. episodes in a safe Deploy defense and
env. agent in non-secure env.
measure and update
Learned measure and update CAPD
CA/D D CA/D D KL-divergence
[Calculate I ’ |
| threshold th } R Agent is
., under attack
> th or not
Learned
CAPD Starting time step

point 20

Effectiveness of AD3

« Effective in Pong for all agents against all attacks

« Less effective in Freeway against less effective attacks

« Not effective in Breakout with high false positive rate for DQN and PPO agents

« Usefulin raising an alarm when the victim is in the direction of negative return (e.g., losing the game)

Losing rate (10 episodes) of DON agents playing Pong with or without additional
defense. Losing rate is caleulated by counting the number of games where the
computer gains 21 points first in an episode. If AD? raises an alarm before an

False positive rae (FPR) and true positive 1_-1“! (TPR) of AD” against all five episode ends, then victim does not lose the game. In each row, the best attack
attacks. High FPR and low TPR values are in red. with the highest losing rate is in bold, and given an e value, the defense with
TPR the highest losing rate for that particular attack is shaded red.
Game Agent FPR pocni OSFW UAP-S UAP-O OSFW(U) _
DON 0.0 0 (] 0 (] 0] raning Sate
-)) ’)) ’ i Method Mo attack FGEM OSFW UAP-8 UAP-O OSFW({L)
Pong A2C .0 1.0 L0 1.0 1.0 1.0 i elenen D 1D 1D 1D 10 D
II__:E‘{,:_ E::; [1]:; i:; i:; H; m 001 Visual Foresight!! 00 0.0 1.0 0.0 0.2 1.0
) A . . : : . 0.2 SA-MDPE 0.0 .0y 0o 0.0 0.0 0.0y
Freeway — A2C 0.0 1.0 L0 1.0 1.0 1.0 AD? o 00 00 00 o 0
Pro 0.0 1.0 0.4 1.0 1.0 1.0 No defense 00 1.0 1.0 1.0 L0 1.0
DN 0.6 1.0 0.6 1.0 1.0 L0 002 Visual Foresight!! 0.0 0.0 1.0 0.0 0.3 1.0
Breakout A2C 0.0 1.0 (L6 1.0 0.5 1.0 S A-NMDPE 0.0 0.5 1.0 1.0 1.0 1.0
PP 0.4 1.0 0.4 1.0 0.6 Lo AD? 0.0 0.0 0.0 0.0 0.0 0.0

Lin, Yen-Chen, et al. "Detecting adversarial attacks on neural network policies with visual foresjght."arXiv 2017. https://arxiv.org/abs/1710.00814
Zhang, Huan, et al. "Robust deep reinforcement learning against adversarial perturbations on state observations.“NeurlPS2020 https://arxiv.org/abs/2003.08928

https://arxiv.org/abs/1710.00814
https://arxiv.org/abs/2003.08938

Conclusion and Takeaways

Adversarial models DNNs must be redefined in DRL due to their different innate characteristics

UAP-S and UAP-O: Degrade the performance of deep reinforcement learning agents
« Leverages input-agnostic adversarial perturbation generation methods
 Same effectiveness as state-of-the-art attacks, can be mounted in real time

« AD3: Detects the presence of an adversary
« Relies on the temporal coherence of actions (predictable action sequences)
« Useful to combine with other recovery methods/defenses

5]

4

ik [m]

[=]

https://ssg.aalto.fi/research/projects/
https://crysp.uwaterloo.ca/research/SSG/

r.
by

|input state

batlitekgul@acm.org
buse.atli tekgul@nokia-bell-labs.com
buseatlitekgul@github.io

22

[ﬁcl‘iginal action: LEFT[‘;input stato‘ action taken: NOOP|

https://ssg.aalto.fi/research/projects/
https://crysp.uwaterloo.ca/research/SSG/
mailto:batlitekgul@acm.org
mailto:buse.atli_tekgul@nokia-bell-labs.com
mailto:buseatlitekgul@github.io

